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Abstract. With the continuous development of China's national economy and the steady promotion
of the rural revitalization strategy, optimizing crop planting strategies has become increasingly
prominent. In this study, a crop planting strategy optimization method based on an improved genetic
algorithm is proposed based on careful consideration of planting area, crop rotation system, crop
growing season, and topography. Specifically, on the one hand, this method uses hyperbolic tangent
function fitting, Pearson correlation coefficient, and hierarchical analysis to construct a correlation
coefficient model, and specifies alternative and complementary constraints. On the other hand, the
relationship between expected sales volume and sales price, and planting cost is analyzed by Lasso
regression, the corresponding objective function is designed, and the proposed optimization scheme
is solved by the improved genetic algorithm. The results of simulation experiments verified the
effectiveness of the method and provided strong support for achieving scientific and rational
agricultural cultivation. This paper innovatively proposed an improved genetic algorithm to optimize
the planting strategy, effectively optimize the planting strategy, and improve the economic benefits
of crops.
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1. Introduction

Crop planting strategy optimization is of great significance in agricultural production. It is
conducive to promoting the sustainable development of agricultural production, improving the
efficiency of agricultural resources, guaranteeing national food security, promoting agricultural
technological innovation and industrial upgrading, and increasing farmers' income and employment
opportunities. It is not only related to the livelihood of farmers but also to national food security,
sustainable development of agriculture, and ecological environment protection.

There has been a lot of research on crop cultivation.For example, Feng Guangliang used a particle
swarm optimization algorithm to solve the two-layer planting structure optimization model
constructed and carried out the optimization calculation of the planting structure in the study area
under the conditions of single-layer planning and double-layer planning [1]. Li Lixing et al. studied
and established a multi-objective optimization model for regional crop structure scheduling based on
the principle of "grain-oriented"” and the consideration of fully applying agricultural big data to adjust
and optimize the rural crop structure. The PSO algorithm based on the Spark platform is used to solve
the model, which improves the running speed of the program [2]. Aiming at the scientific problems
of planting structure optimization and rational allocation of agricultural water in the Manas River
irrigation district under the constraint of total water resources, Pan Yue et al. constructed a multi-
objective optimal allocation model to optimize and adjust crop planting structure and adopted the
improved Gray Wolf optimization algorithm (DSF-GWO) to solve the problem [3]. Based on the
calibrated crop growth model, Chen Lei carried out planting decisions on driving factors such as
meteorological conditions, irrigation treatment, and fertilization management [4]. Based on the
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swarm intelligence algorithm and crop model, the optimal planting decision is solved to meet the
needs of agricultural production. Li Yanbin et al. introduced inertial weight attenuation and particle
variation strategies to establish a multi-objective agricultural planting structure optimization model
based on an improved particle swarm optimization algorithm, which can improve comprehensive
benefits and yield while reducing irrigation water requirements [5]. Wang Lu constructed a multi-
objective crop planting structure adjustment model based on NSGA-II to optimize the planting
structure in the upper reaches of Baiyangdian Lake [6]. Based on the Matlab Global Search
optimization algorithm, Yang Xiong established an optimization model for planting structure
objectives, taking the maximum total crop output and the maximum total output value as two
optimization objectives, taking the annual sown area of different crops as decision variables, and
taking the type of cultivated land and planting system as constraint conditions to optimize the planting
structure [7]. Wu Menghan and Wang Yi took Shachai Irrigation District in Xinjiang as an example
and used a multi-objective comprehensive optimization model to optimize and analyze the planting
structure of crops in the irrigation district from three perspectives: agricultural ecological benefit,
economic benefit, and irrigation water consumption [8]. Using a systematic analysis method, Tu
integrated the water footprint theory, fuzzy chance-constrained programming (FCCP), and multi-
objective programming model (MOPM) into a coupled framework to optimize the allocation of
agricultural water and soil resources and crop planting structure, and analyzed their effectiveness
under different believability [9]. Taking Shanxi Province as the research area, Zhang Pengfei et al.
analyzed the water consumption and energy consumption characteristics of major crops by using
water footprint and energy consumption accounting models and built a multi-objective programming
model with water resources, energy, and grain as constraints to optimize the planting structure of
major crops [10]. Combining the advantages of deterministic dynamic programming and stochastic
programming, Zhang Hao et al. established an optimization model of planting structure in tropical
grassland climatic irrigation districts based on stochastic dynamic programming [11].

To solve the optimal planting scheme of crops, we use a new way to accelerate the convergence
speed of genetic algorithms. Aiming at the shortcoming of slow convergence of the genetic algorithm,
we increase mutation probability linearly and cross probability decrease in the iterative process.
Under the assumption that various crops do not affect each other, the optimal planting plan can be
solved by doing so. Considering the complementarity and substitutability between multiple crops and
the relationship between sales volume, price, and cost, we need to optimize the above model from
two dimensions: horizontal and vertical. Horizontally, depending on the complementarity and
substitutability of different crops, the correlation between sales volume, price, and cost of other crops
was discussed. The Pearson correlation coefficient was used to analyze the price of different crops to
determine the correlation between crops. Using the analytic hierarchy process, the proportion weights
of weather factors, sales price, and market demand are determined respectively, and the correlation
coefficient model is established. Vertically, through the Lasso regression model, the relationship
between the expected sales of crops, sales price, and planting cost is established. After modifying the
previous objective function, adding complementarity constraint and substitutability constraint, the
simulation data are solved, and the results without considering the interaction of various crops are
analyzed.

2. Theory and method

Without considering the substitutability and complementarity between crops and the relationship
between expected sales, selling price, and planting cost, the objective function is as follows:
2030 n m

max/ = Z Z (mln (:I?Z',N : E,j,t)si,t) : Pi,t — Tt CiJ) (1)

t=2024 i=1 j=1
The interaction between prices and sales of crops 7 and & is reflected by market correlation. If
they are substitutes, the correlation coefficient shows the competition. If they are complementary, the
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correlation coefficient is positive and sales and prices increase together. Market correlation is defined
by the elasticity of market demand. When supply of crop ¢ changes, market demand for crop & may

change accordingly depending on the relationship.

1 2030 Sy, S,
7D (R v )

t=2024 Z («Tk] . Yk] t) Z (]71',]',; . Yi,j,t) (2)

i=1 j=1

R =

Where R;, is market correlation coefficient. When p,, >0, crop ¢ and k are substitutable.
When v, ;> 0, they are complementary. Price-volume relationship is reflected in planted area z;; .
and expected sales volume S, .. Hyperbolic tangent function is introduced to standardize and

normalize correlation coefficients:
Z k — tanh (R k) (3)

Where r;/,e[-1,1]. When r;, is negative and closer to -1, stronger ¢,k substitution. When
positive and closer to 1, stronger ¢,k complementarity. Closer absolute value to 1 means stronger
correlation. Also, under various factors, crop ¢ and k prices are correlated. When 4's selling price
changes, k's price may rise due to complementarity. If directly competitive, prices may fall due to

vicious competition. Based on Pearson correlation coefficient, judge correlation between sales prices
of various crops. Formula as follows:

E(xkjt xut)_E(kat)'E(xwt)
VE@Z;.)— E*(z;0) - VE (22,,) — E(we,.) @)

Larger p;, means stronger positive correlation and substitutability. Smaller p;, means stronger

negative correlation and complementarity. Also, climate change effects on different crops may be
related. If crops | and K respond similarly to same climatic conditions, yields fluctuate similarly.
Specifically, r#, =1 for same response (positively correlated), =7, =-1 for opposite response

(negative correlation), and £, =0 for no response. Next, build a correlation model. Divide

C
Pik —

complexity of fix into multiple parts reflecting different factors. Final correlation coefficient is a
weighted sum of multiple parts:

— .S . € .l
Tig— W1 Tk + w, Pi.k +ws T ik (5)

Among them, w,,w,,ws are weighting coefficients, balanced by AHP to meet w; + w, + w3 =1.

Establish Lasso model with planting cost and unit price as independent vars and expected sales
volume as dependent var. Determine Lasso model hyperparameters by cross-validation. Determine
variables based on regression coefficient results. Variables with zero normalization coefficient are
eliminated by Lasso regression. Finally, obtain Lasso regression formula and prediction and list
retained and excluded vars. Specific fitting formula as follows:

Sii=not+mPi+nCi,+e¢ (6)

Where P, represents the selling price of crop i in yeart, and C;; represents the planting cost of

crop i in year t. By introducing the correlation coefficient model, the overall objective function can
be modified as follows:

2030 n

maxZ = Z ZZ[(mm( Tije ”t,51t> ¢,t+Ei,j,t-0.5-Pi,t)f:vi,j,t-Ci,t]

t=2024 i=1 j= (7)

+ E :Ti,k " Tijt* Thgt
ik

The model incorporates complex market supply-demand, crop substitution/complementarity,
climate impact on yield, and land adaptability, making Problem 3's model more complex and realistic.
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Solving this model yields a more optimized planting scheme. Considering actual planting, the
following constraints are proposed:
(1) Alternative constraints:

Tije T Thge S Uipje (8)
(2) Complementary constraints:
Tije X Lo S Mg ©)
(3) General constraints:
to+2
D> w =€, Vi=1,2,.,m, Vit,=2024,2025,2026, 2027
t=t, i€B
T Tij—1 =0, Vi,j,t=2024
16 54
> @, =0,Vt=2024,2025,..., 2030
i=1 j=27
26 54
D> Ties0 + D B =0, Ve =2024,2025,...,2030
j=1 j=35
34 26
D> w0 =0, Yt =2024,2025,...,2030
i=17 j=1
37 26 37 54
DD Swe+ D> w0 =0,Vt=2024,2025,...,2030
i=35 j=1 i=35 j=35
41 34 41 54
S>3 @+ >0 > 4, =0,Yt=2024,2025,..., 2030
i=38 j=1 i=38 j=51
s.t. 34 50 (10)
D By =0,Vt=2024,2025,..., 2030
=17 j=27
37 34
D> au. =0,V =2024,2025,...,2030
i=35 j=27
41 50
DD . =0,Vt=2024,2025, ..., 2030
i=38 ;=35
T, <A, Vt=2024,2025,..., 2030
Vji=1,2,..34 Vi=1,2,..16
0<o,,, <A, Vt=2024,2025,...,2030 V;j=27,28,...34 Vi=17,18,...41
0<p3,,, <A, Vt=2024,2025,...,2030 V;j=27,28,..34 Vi=17,18,...41
0<a,,, <A, Vt=2024,2025,...,2030 Vj=35,36,...54 Vi=17,18,...41
0<B.,. <A, Vt=2024,2025,...,2030 Vj=35,36,...54 Vi=17,18,...41
S I(,,>0)<2, V;j=35,36,..54, Vt=2024,2025,...,2030
i=1

The above mixed integer programming is complex, so genetic algorithm is employed. Genetic
algorithm simulates Darwinian evolution and natural selection. Matlab is used to design an improved
adaptive genetic algorithm to solve the first and second sub-questions. Set max evolutions to 2000.
Mutation prob. increases linearly from 0.2 to 0.4. Crossover prob. decreases linearly from 0.8 to 0.5
to accelerate convergence. Flow chart as in Figure 1.

Mutation [+ Crossover Selection

N

convergence
conditions are
met

A J

. . . Individual fitness
Population Kmematic within 2
initialization model > L

op(t) solving population is
pop = calculated obj(r)

output the
Y optimal path

Figure 1. Schematic diagram of optimization process
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3. Real data analysis

According to the data of a village located in the mountainous area of North China given by the
National College Students Mathematical Modeling Competition, we first preprocessed and observed
the data. There are five types of plots, of which terraced fields account for the largest proportion
(51%), followed by flat dry land (30.1%), hill land (9.0%) and irrigated land (8.9%), and ordinary
greenhouses (0.8%) and smart greenhouses (0.2%) account for the least. In the data obtained by the
author, each crop has the highest unit price and the lowest unit price. In this paper, the average value
of the highest and lowest unit price is taken as the unit price of this crop. Carefully observing the data,
it can be found that the yield per mu of the same crop in different plots is also different. Generally
speaking, the yield of planting on flat and dry land is greater than that of planting on terrace land,
greater than that of planting on hillside land, and the yield of planting in greenhouses is greater than
that of planting on irrigated land.

3.1. Correlation between sales prices

Affected by many factors, the price of crops has a certain correlation with that of crops. The seven-
year sales prices of various crops are processed. The Pearson correlation coefficient can be used to
measure the degree of correlation between two variables (formula (4)). Visualize it using heat maps.

It can be seen from figure 2 that the larger pi.x (red) is, the stronger the positive correlation between

the two, and the two will crowd out the market space and have substitutability; the smaller p:x
(yellow) is, the stronger the negative correlation between the two, and the two are complementary.
Based on this, this paper makes the following assumptions:

pix>0.85 There is substitution between the two crops.

pir <—0.85 There is complementarity between the two crops.

Mushroom

White radi...

Yellow hea... _
Lettuce _
Romaine le... _
Green pepp..._
Tomato _
Concanaval... _
Barley
Pumpkin
Sorghum
Mung bean
Soybeans

Figure 2. Pearson correlation coefficient heat map

3.2. The correlation between expected sales volume, selling price and planting cost

With the planting cost and selling unit price of each crop as independent variables and the expected
sales volume as dependent variables, the Lasso model (shown in figure 3) was established for analysis.
Stepl: The X\ value was determined by cross-validation method. The A\ value is chosen to

minimize the mean square error of the Lasso model.
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Figure 3. Lasso regression cross validation graph
To minimize the mean square error, determine )\ =2.0, (log ()\))=0.693.

Step2: A and regression coefficient plots were used to determine the variables selected by the
model, in which variables with zero normalization coefficient could be considered to be eliminated
by the Lasso regression model (shown in figure 4).

-~ price <O~ cost

Figure 4. X and model regression coefficient graph

Step3: The formula (formula (6)) and prediction of the Lasso regression model are obtained, and
the retained and excluded variables are listed. The regression results are shown in table 1:

Table 1. Lasso returns results

Variable name Standardization coefficient | Nonnormalized coefficient R=2
Intercept 574966.728 581270.982
cost -4,062 -4,013 0.159
price 1707.475 1684.776

As shown in the figure 5, after 1000 iterations of the genetic algorithm, the fitness has been
relatively stable, and the optimal planting scheme solved is represented by a bar chart. As shown in
the figure 6 and figure 7, the results showed that compared with the results without considering the
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mutual influence of various crops, the planting amount of vegetables increased by 15.6%, and the
planting amount of the same kind of crops had a large difference, and there was a trend of polarization.

yield

yield

6.5 T T

, ?/ |
2.5 1 1 1 1 1
0 200 400 600 800 1000 1200
iterations
Figure 5. The change of fitness of genetic algorithm with the increase of iteration times
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Figure 6. Run result (by year)
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Figure 7. Operation result (subplot)

4. Conclusions

In summary, the model constructed in this study has excellent performance in terms of reality,
algorithm effectiveness, and reliability of experimental verification. In terms of reality, the model
fully considers the fungibility and complementarity between crops, and at the same time includes
practical factors such as market demand and climate change, so that the obtained results are highly
consistent with crop planting planning in the real world. In terms of algorithm effectiveness, the
introduction of a genetic algorithm successfully solves complex linear and nonlinear programming
problems under multiple constraints, in which the adaptive crossover and mutation probability
significantly improve the convergence speed and the accuracy of the algorithm. In terms of
experimental verification, to ensure the accuracy and stability of the results, we conducted several
experiments and used the control variable method to conduct an in-depth analysis of the optimal
solution distribution under different disturbance terms, which fully confirmed the reliability of the
scheme. Therefore, this model can provide scientific, rigorous, and feasible decision support for crop
planting planning.

Future research directions can be further expanded from the following key dimensions. First of all,
in the detailed consideration of climate factors, it is necessary to build more complex climate
disturbance models. Specifically, the probability of extreme weather events is included in the analysis,
and their unique impact on different crop yields is explored in depth to more accurately reflect the
potential threat of climate change to crops and lay the foundation for the development of scientific
and effective response strategies. Secondly, in terms of market price prediction, more complex time
series models or machine learning models can be used to accurately predict the future trend of market
price changes through rich historical data, reduce the market volatility simplify assumptions, and
improve the accuracy and reliability of market prediction. Thirdly, a multi-objective optimization
model should be developed from the perspective of multi-objective optimization. Based on the current
profit maximization goal, environmental protection, and social benefits are introduced promptly to
promote a more comprehensive and sustainable crop planting program. Fourth, in the field of
application of the model, it should be widely expanded in different climatic zones and geographical
conditions of crop planting planning. For example, in the southern rice-growing area and the
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northwest dry-farming area, the model can be widely used by adjusting crop parameters and climate
conditions reasonably. Finally, in terms of cross-domain application exploration, the feasibility of
this model in resource optimization in other fields such as energy distribution and manufacturing
production planning is actively explored, and its universal advantages in considering resource
substitution and complementarity are fully utilized, providing new ideas and methods for resource
optimization in different fields.
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