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Abstract. Bitcoin's high volatility poses significant challenges for short-term price prediction, making 
it a critical area of study for financial forecasting. Traditional models such as Long Short-Term 
Memory (LSTM) networks often encounter difficulties in handling long-range dependencies and non-
stationary data, limiting their predictive accuracy under volatile conditions. This study introduces the 
Time-Series Transformer (TST) as a novel approach to predict Bitcoin's short-term prices. By 
leveraging self-attention mechanisms, TST effectively captures complex temporal patterns in 
historical Bitcoin data, including prices and trading volume. The data was segmented into fixed-
length windows to facilitate model training and testing. Evaluation metrics such as Mean Squared 
Error (MSE), Mean Absolute Scaled Error (MASE), and R-squared (R²) demonstrated TST’s superior 
performance over LSTM, particularly during periods of high market fluctuation. Furthermore, TST 
exhibited notable computational efficiency when working with large datasets, underscoring its 
scalability. These findings not only highlight TST’s potential for enhancing cryptocurrency price 
prediction but also pave the way for future research integrating external data sources and exploring 
further model enhancements for more robust financial forecasting. 
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1. Introduction 

Bitcoin has attracted a great deal of attention in recent years in several ways. Bitcoin payments are 

based on a new and interesting technological solution and function differently than traditional 

payments. In some payment situations, Bitcoin can bring lower costs, speed, the anonymity of 

traditional payment methods, and more [1]. Traditional statistical models, such as ARIMA, and 

machine learning techniques, including Long Short-Term Memory (LSTM) networks, have been 

widely applied to time-series forecasting. However, these methods often fall short in capturing 

complex temporal dependencies and adapting to non-stationary data inherent in cryptocurrency 

markets [2]. The emergence of Transformer-based architectures, initially developed for natural 

language processing tasks, has opened new avenues for time-series forecasting. The Time-Series 

Transformer (TST) leverages self-attention mechanisms to model long-range dependencies and 

complex temporal patterns efficiently. Unlike recurrent models, TST processes all time steps 

simultaneously, enabling it to handle large datasets with high computational efficiency [3]. This 

makes it particularly well-suited for financial data characterized by high dimensionality and frequent 

fluctuations. 

This study focuses on evaluating the performance of the TST model in predicting Bitcoin’s short-

term price movements. By examining key metrics such as Mean Squared Error (MSE), Mean 

Absolute Scaled Error (MASE), and R-squared (R²), this research aims to determine whether the TST 

model offers superior predictive accuracy and stability under volatile market conditions. 

The findings of this research not only contribute to the growing body of literature on deep learning 

applications in financial forecasting but also highlight the potential of Transformer-based 

architectures in addressing the unique challenges of cryptocurrency markets. Additionally, this study 

lays the groundwork for future exploration into integrating external data sources and developing 

advanced enhancements to further improve prediction accuracy and applicability. 
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2. Related Works 

2.1. Overview of Transformer and LSTM Models 

Transformer: Transformers rely on a self-attention mechanism that evaluates the relationships 

between all elements in a sequence simultaneously. The key components include query Q, key K, 

value matrices V, the dimension of the key vector which is used for scaling to avoid excessive dot 

product values, and SoftMax used to normalize attention score. Calculate attention scores as follows: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                     (1) 

Additionally, to capture different subspace information, the multi-head attention mechanism 

parallel computing multiple attention heads: 

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂           (2) 

With each head: 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑖
𝑄, 𝐾𝑊𝑖

𝐾, 𝑉𝑊𝑖
𝑉)                     (3) 

𝑊𝑖
𝑄

, 𝑊𝑖
𝐾, 𝑊𝑖

𝑉  are linear transformation matrices for different attention heads, 𝑊𝑂  is output 

linear transformation matrix. 

In each Transformer layer, the output after multiple attentions is nonlinearly transformed through 

a fully connected network: 

𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑈(𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                      (4) 

𝑊1, 𝑊2 are weight matrix, 𝑏1and 𝑏2 are bias term. 

LSTM: LSTM is a type of Recurrent Neural Network (RNN) designed to overcome the vanishing 

gradient problem often encountered in standard RNNs. It incorporates three gates—input, forget, and 

output—that regulate the flow of information: 

Forget Gate which determines how much past memory the current time step retains: 

𝑓𝑡 = 𝜎(𝑊𝑓 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                          (5) 

ℎ𝑡−1 is the hidden state from the previous time step. 

𝑥𝑡 is the input at the current time step. 

𝑊𝑓 , 𝑏𝑓 are forget gate weights and bias. 

σ is the sigmoid activation function. 

Input Gate which determines the degree to which new information is written in the current time 

step: 

𝑖𝑡 = 𝜎(𝑊𝑖 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                           (6) 

Output Gate determines the hidden state output for the current time step: 

𝑜𝑡 = 𝜎(𝑊𝑜 × [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜                           (7) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ (𝑐𝑡)                               (8) 

2.2. Characteristics and Advantages of Transformer Models 

Transformers offer several key advantages over traditional models like LSTM. First, their 

parallelization capability allows them to handle all time steps simultaneously, significantly reducing 

training time compared to LSTM, which processes data sequentially. Second, the self-attention 

mechanism enables Transformers to scale effectively with large datasets, making them particularly 

suitable for high-frequency financial data [4]. Third, Transformers excel at modeling relationships 

between distant time steps, addressing a critical limitation of LSTM by leveraging attention scores to 

capture long-range dependencies. Finally, Transformers’ flexibility allows for seamless integration 
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of additional features, such as trading volume or external sentiment data, enhancing their predictive 

capabilities. 

These strengths position Transformers as a powerful tool for tackling the unique challenges of 

cryptocurrency price prediction, where data complexity and market dynamics demand robust and 

adaptable models [5]. 

3. Methodology 

3.1. Data Preprocessing 

The dataset utilized in this study originates from the Kaggle repository 

(https://www.kaggle.com/aipeli/btcusdt) and comprises one year of minute-level trading data for the 

BTC-USDT pair. This dataset contains 35 columns, including a timestamp and 34 features derived 

from price and volume data. The core features include open price, high price, low price, close price, 

and trading volume. Additionally, 29 technical indicators were calculated using the Finta library, 

encompassing metrics such as TRIX, VWAP, MACD, ROC, MOM, RSI, and more. These features 

collectively provide a comprehensive representation of Bitcoin's trading behavior. 

To ensure data quality, all rows preceding the last missing value in any feature sequence 

(approximately 131 rows) were removed. This preprocessing step guarantees a complete dataset 

devoid of missing values, facilitating accurate model training and evaluation. 

Use the plot_correlation function to plot correlation matrix (see Figure 1) to explore the 

relationships between all 34 features, including the newly calculated indicators. The correlation 

matrix was plotted with minute-level granularity, offering insights into inter-feature dependencies. 

Based on the correlation analysis, the features were reranked by importance that optimizes model 

performance. 

Bayesian hyperparameter optimization, conducted using the Optuna framework, identified min-

max normalization as the optimal scaling technique. This method scales each feature to a range of 

[0,1], enhancing the model’s ability to learn from data with varying magnitudes. The input sequence 

length (source sequence) was determined to be 10 time steps (10 minutes), while the prediction 

sequence length (target sequence) was set to 2 time steps (2 minutes). The model will delineate a 

source sequence on the dataset and slide it in steps of 1 (Overlap = 1). 

 

Figure 1. Part of Correlation Matrix. 

By using Optuna, it can find the best data preprocessing hyperparameters, as shown in Table 1 

below. 
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Table 1. The Best Data Hyperparameters. 

Hyperparameters Value 

Features 34 

Scaler Minmax 

Train batch size 32 

Bptt source steps 10 

Bptt target steps 2 

Overlap 1 
 

3.2. Time-Series Transformer (TST) Model Architecture and Hyperparameters 

The Time-Series Transformer (TST) model is built on the Transformer architecture, originally 

designed for natural language processing tasks. It consists of an Encoder-Decoder framework, as 

illustrated in the figure 2. This structure enables the TST model to efficiently handle sequential data 

and capture both short- and long-term dependencies in time-series datasets. 

1. Encoder: The encoder comprises multiple identical layers (‘Nx’) that sequentially process the 

input data. Each layer has the following components: 

(a) Multi-Head Attention: This mechanism evaluates the relationships between all time steps in 

the input, enabling the model to focus on significant temporal dependencies. 

(b) Feed-Forward Network (FFN): A fully connected network applied independently to each time 

step, enabling nonlinear transformations. 

(c) Add & Norm: Residual connections and layer normalization improve gradient flow and 

stabilize training. 

2. Decoder: The decoder, similar to the encoder, also comprises multiple identical layers (‘Nx’). 

However, it includes an additional Masked Multi-Head Attention layer, which ensures that the 

predictions for each time step only depend on previous time steps, preserving the autoregressive 

property required for sequence prediction. 

3. Time Embedding: Both the encoder and decoder utilize time embeddings to represent temporal 

features, integrating positional information into the model. 

4. Output Layer: A linear layer maps the decoder’s output to the desired prediction target. 

This architecture enables parallel processing and captures complex temporal relationships, making 

it particularly suitable for financial time-series data with high dimensionality. 

 

Figure 2. TST Architecture. 
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The hyperparameters used for the TST model are carefully selected to optimize its performance 

for predicting Bitcoin price changes (see Figure 2). These parameters govern the architecture’s 

complexity, data processing, and training strategy. 

By using Optuna, it can find out the best model architecture and training hyperparameters, as 

shown in Table 2 below. 

Table 2. The Best Model Architecture and Training Hyperparameters. 

Hyperparameter Value 

Encoder/Decoder layers 4 

Output features 64 

Attention heads 16 

Dimension of the feedforward network 384 

Activation GeLU 

Gradient Clip 0.75 

Learning rate 0.5 

Learning rate decay factor 0.95 

Step size 1.0 
 

These hyperparameters are tailored for the BTC-USDT dataset, balancing computational 

efficiency and prediction accuracy. The use of min-max normalization ensures all features are scaled 

consistently, while the 10-to-2 time-step ratio allows the model to focus on short-term price trends. 

Additionally, the chosen architecture with 4 encoder and decoder layers, 16 attention heads, and the 

GELU activation provides sufficient complexity to capture the intricate patterns in the financial data. 

3.3. Dataset Splitting and Evaluation Metrics 

The BTC-USDT dataset was divided into three subsets to ensure robust model evaluation. The 

training set, comprising 80% of the data, was used to optimize the model parameters during training. 

The validation set, accounting for 10% of the data, was employed for hyperparameter tuning and 

model selection, ensuring the model’s ability to generalize well to unseen data. Finally, the test set, 

also comprising 10% of the data, was held out for final evaluation. This division balances the need 

for sufficient data in training while reserving adequate portions for validation and testing (see Figure 

3), effectively preventing issues like overfitting or underfitting during the modeling process. 

 

Figure 3. Data Separation. 



Highlights in Business, Economics and Management GEBM 2025 

Volume 54 (2025)  

 

178 

The model’s performance was evaluated on the test set using three key metrics. The Mean Squared 

Error (MSE) measures the average squared difference between predicted and actual values, penalizing 

larger errors more heavily and providing a clear indication of the model’s accuracy. The Mean 

Absolute Scaled Error (MASE) offers a normalized measure of prediction quality by scaling absolute 

errors relative to a naive benchmark model, ensuring that the model’s performance is assessed in a 

context-sensitive manner. Additionally, the Coefficient of Determination (R²) evaluates how well the 

model explains the variance in the actual data, with values closer to 1 indicating better explanatory 

power. Together, these metrics provide a comprehensive understanding of the model’s predictive 

accuracy, robustness, and generalization capabilities, offering critical insights into its overall 

performance. 

3.4. Training 

The model was trained over 60 epochs to optimize its parameters. During the first 10 epochs, the 

validation loss was relatively high, reflecting the model’s initial adjustments to the dataset. Between 

epochs 11 and 20, the loss showed a slower but steady decrease. From epoch 20 onward, the loss 

values stabilized, converging at approximately 0.000040. Figure 4 visualizes the loss evolution during 

training, highlighting the progressive improvements in the model’s predictive performance over time. 

This trend demonstrates the model’s ability to efficiently learn and generalize from the training data. 

 

Figure 4. Training and Validation Loss vs. Epochs. 

4. Experiments and Results 

4.1. Time-Series Transformer vs. LSTM 

The experimental results evaluate the performance of the Time-Series Transformer (TST) model 

against the baseline Long Short-Term Memory (LSTM) model on the BTC-USDT dataset. Table 3 

presents the results for key evaluation metrics, including Mean Squared Error (MSE), Mean Absolute 

Scaled Error (MASE), and Coefficient of Determination (R²). The TST model demonstrates a clear 

advantage, achieving lower MSE and MASE values compared to the LSTM, while also exhibiting 

higher R² values, which indicates better explanatory power of the variance in the test data. These 

results confirm the effectiveness of the TST model in handling short-term cryptocurrency price 

prediction tasks, particularly in high-dimensional and volatile datasets. 

Table 3. Evaluation Metrics of TST and Baseline LSTM. 

 TST LSTM 

R^2 0.996774 0.899122 

MSE 62001.403974 293071.468541 

MASE 4.747746 5.297903 
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4.2. Visualization of Predictions 

To further analyze the prediction capabilities of the TST model, Figure 5 shows the model’s fit on 

the entire dataset, illustrating the alignment between predicted and actual closing prices. While this 

provides an overview of the model’s performance, the detailed trends may be difficult to observe. 

 

Figure 5. Actual vs. Predicted Prices on the Entire Dataset. 

Therefore, Figure 6 focuses on the test set portion of the dataset, zooming in to highlight the 

model’s performance in capturing finer details of price movements. The zoomed-in visualization 

reveals that the TST model aligns closely with actual prices, even during periods of significant 

fluctuation. These visualizations provide clear evidence of the TST model’s robustness and its ability 

to generalize well to unseen data, making it an effective tool for time-series forecasting in financial 

markets. 

 

Figure 6. Actual vs. Predicted Prices on the Test Set – Zoom in. 

4.3. Error Analyzes 

A scatter plot of prediction errors was generated to evaluate the TST model’s accuracy across the 

dataset (see Figure 7). The majority of prediction errors are tightly clustered around zero, indicating 

that the model effectively minimizes large deviations from actual values. However, there are 

occasional spikes in error during periods of heightened market volatility, suggesting that extreme 

price movements pose a challenge for the model. Despite these outliers, the overall distribution shows 

a balanced error spread with no significant bias, highlighting the TST model’s reliability in capturing 

general price trends. 
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Figure 7. Error Distribution of Predictions. 

Based on calculations, the standard deviation of prediction errors across the dataset is 

approximately $300.20. Given that the average price level of the dataset ranges between $50,000 and 

$60,000, this error standard deviation represents only about 0.5% to 0.6% of the price level. For high-

frequency, minute-level predictions, such an error margin is relatively small and can be considered a 

precise performance benchmark. 

5. Limitation and Reflection 

Despite the promising performance of the Time-Series Transformer (TST) model, several 

limitations in the experimental design warrant attention. First, the dataset used in this study spans 

only one year of minute-level BTC-USDT trading data. While this provides a robust basis for 

evaluating short-term prediction capabilities, it limits the model’s exposure to diverse market 

conditions, such as prolonged bull or bear trends, regulatory changes, or extreme volatility events. 

These factors could significantly impact the model’s generalizability when applied to unseen data 

from other time periods or cryptocurrency assets [6]. Additionally, the study’s reliance on a single 

dataset and a fixed set of technical indicators may overlook other influential variables, such as 

macroeconomic factors, blockchain-specific metrics, or social sentiment, which could enhance 

predictive accuracy if incorporated [7]. 

Another notable limitation is the computational complexity of the TST model. While Transformers 

are inherently efficient due to their parallel processing capabilities, their training and inference still 

require significant computational resources, particularly when applied to high-dimensional and large-

scale financial data [8]. This resource-intensive nature may constrain the practical application of the 

model in environments with limited computational infrastructure. Moreover, the fixed 

hyperparameters, determined through Bayesian optimization for this specific dataset, may not be 

optimal for other datasets or market conditions. Future research should explore adaptive 

hyperparameter tuning and model architectures that balance computational efficiency with predictive 

power. 

Reflecting on these limitations, the TST model’s predictive capabilities are context-dependent, 

constrained by dataset scope, computational demands, and the absence of external factors like 

macroeconomic variables. Expanding datasets across diverse timeframes and integrating adaptive 

hyperparameter tuning could enhance robustness and accuracy. Incorporating multi-modal data 

sources, such as social sentiment or blockchain metrics, would further improve adaptability. 

Moreover, addressing the model’s interpretability through explainability techniques is crucial to build 

trust in financial applications. These steps would expand the model’s real-world applicability and 

address its current limitations effectively. 

Building on the foundation of Transformer-based models, future research could explore advanced 

variants such as the Informer model. Informer introduces a self-attention mechanism optimized for 

long-sequence data by reducing computational overhead and addressing memory constraints [9]. This 
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makes it particularly suitable for high-frequency financial datasets, where both scalability and 

efficiency are critical. By leveraging Informer’s ability to focus on sparse yet informative regions of 

the input sequence, researchers could enhance model performance in capturing intricate temporal 

dependencies while minimizing resource consumption [10]. Additionally, combining Informer with 

external factors, such as social sentiment or macroeconomic indicators, could unlock new possibilities 

for multi-modal time-series forecasting. This direction not only aligns with the ongoing evolution of 

Transformer architectures but also offers practical advancements for real-world applications in 

cryptocurrency markets and beyond. 

6. Conclusion 

This study explored the application of the Time-Series Transformer (TST) model for short-term 

price prediction in the cryptocurrency market, focusing on the BTC-USDT trading pair. The TST 

model outperformed traditional approaches like LSTM in predictive accuracy, scalability, and 

robustness, demonstrating its ability to capture complex temporal dependencies and handle volatile 

price movements. However, key limitations were identified, including the reliance on a single dataset 

with fixed technical indicators and the computational demands of the Transformer architecture. 

Additionally, the lack of external factors, such as macroeconomic variables or social sentiment, limits 

the model’s broader applicability. Addressing these challenges will require integrating diverse data 

sources, expanding dataset scope, and exploring adaptive Transformer variants like Informer, which 

can optimize attention mechanisms for long-sequence data while reducing computational overhead. 

Despite these constraints, the TST model’s capacity to generalize across high-dimensional data and 

adapt to dynamic market conditions positions it as a valuable tool for cryptocurrency analysis. Future 

efforts to incorporate multi-modal inputs and enhance model interpretability will unlock its full 

potential, enabling it to tackle the complexities of modern financial forecasting effectively. 
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