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Abstract. This study examines how rural digital transformation impacts agricultural carbon emission 
intensity, offering insights for synergizing emission reduction and digital rural development. Using 
the entropy weight method to assess results of digital transformation in agriculture, baseline  
regression and mediation models are employed, supplemented by heterogeneity analyses across 
grain-producing and topographically diverse regions. Results reveal that rural digital transformation  
significantly suppresses agricultural carbon emissions, with stronger effects in mountainous areas 
compared to plains. Emission reduction efficacy varies regionally, showing greater impact in 
production-marketing balance zones than in primary grain-producing areas and in livestock areas 
than plantations. Mechanistically, digitization influences emission intensity primarily through 
industrial restructuring and secondarily via agricultural water-use efficiency optimization. These 
findings underscore the importance of region-specific digital strategies, enhanced R&D in 
central/eastern regions, and cross-regional collaboration to leverage digital industrial upgrades. The 
study provides actionable pathways for tailoring digitalization policies, advancing green technology 
integration, and fostering sustainable agricultural transformation through targeted spatial planning 
and institutional innovation. 

Keywords: Rural Digital Transformation, Agricultural Carbon Emission Intensity, Mediating Effects, 
Regression To The Base. 

1. Introduction 

As the second largest source of carbon outside of industry, agriculture has a tough task in the 

reduction of carbon emissions. Ecumenic agricultural production activities, such as large-scale 

fertilizer application and film mulching, generate large amounts of carbon emissions, which in turn 

contribute to the global greenhouse effect. As digital technology develops by leaps and bounds, 

China's countryside is becoming increasingly digitized, providing new ideas for agricultural 

production. To align with China’s carbon peaking and neutrality goals, exploring the emission-

reduction potential of rural digitization is imperative.   

What is undeniable is that the current research on digitization and agricultural decarbonization 

pathways and policy design. However, throughout the literature, few scholars have explored rural 

digitization and agricultural carbon intensity within a unified framework, resulting in a gap in this 

part of the research. Li et al. (2024) identified an inverted U-shaped relationship between digital 

inclusive finance and agricultural emissions, mediated by scale expansion and structural optimization 

[1]. Chen and Li (2024) highlighted agricultural digitalization’s decarbonization potential through 

scaled operations and innovation, while noting regional disparities and threshold effects in emission 

reduction efficacy[2]. Against this backdrop, our research leverages panel data from 30 Chinese 

provinces spanning 2013 to 2021. We offer several key contributions. First, we comprehensively 

explore how digitization impacts agricultural carbon emissions and the underlying mechanisms. 

Second, we uncover how these effects vary across different terrains, agricultural production targets, 

and functional regions. Our findings provide new angles and empirical evidence for driving forward 

agricultural carbon reduction efforts and digital development. This analysis enables more effective 



Highlights in Business, Economics and Management EAIS 2025 

Volume 57 (2025)  

 

299 

policy - making, promoting a sustainable and digital future for China's agricultural sector.Research 

methodology 

1.1. Variable Selection 

2.1.1 Dependent variables 

Due to the large discrepancies in the scale agricultural production scales across provinces, total 

agricultural carbon emissions fail to account for output variations, rendering them less persuasive [3]. 

In this study, agricultural carbon emission intensity serves as the key explained variable. It measures 

agricultural carbon emissions relative to each unit of gross agricultural output. To determine 

agricultural carbon emissions, we collated research from various scholars. This approach allows for 

a thorough evaluation of agricultural carbon emissions across China. Such an approach offers a 

comprehensive view of the carbon footprint in the agricultural sector, providing a basis for further 

analysis. [4]. The existing literature outlines three principal approaches to measuring carbon 

emissions: the emission coefficient method, the model simulation method, and the field measurement 

method. Among these, the emission coefficient method enjoys the most extensive application in 

academic research [5]. Consistent with common practice, this study adopts the emission coefficient 

method to calculate agricultural carbon emissions. This approach ensures compatibility with previous 

research, strengthening the comparability and reliability of the results obtained in this paper. 

Referring to Li’s  research[6], this paper constructs an index system for accounting the total 

agricultural carbon emissions using carbon emission coefficients as shown in the table.1. 

Table 1. Carbon sources and their carbon emission factors 

Level 1 indicators Secondary indicators Tertiary indicators 
Carbon emission 

factor 

Agricultural 

carbon emissions 

Renewable energy Diesel fuel 0.59kg/kg 

Industrial processes and 

Product Use 

Fertilizers 0.89kg/kg 

Agrochemical 4.93kg/kg 

Agriculture, forestry and 

Other land use 

Agricultural film 5.18kg/kg 

Irrigated 266.48kg/kg 

Plow 312.60kg/kg 

Agricultural carbon emissions formula. 

𝐶𝑖𝑡 = ∑𝑇𝑛𝑖𝑡 ∗ σ𝑛(𝑛 = 1,2,3,4,5,6)                               (1) 

where, C𝑖𝑡 ,t , σ represent total emissions of the nth carbon source, input quantity, and emission 

coefficients, respectively. The specific carbon emission coefficients are shown in Table 

1.Agricultural carbon emission intensity calculation formula.  

𝐴𝑐𝑖𝑖𝑡 =
𝐶𝑖𝑡

𝐴𝐺𝑖𝑡
                                    (2) 

AG denotes agricultural GDP , and Aci is the efficiency of agricultural carbon emissions, higher 

Aci reflects greater relative emissions. 

2.1.2 Core explanatory variables 

Since the broad digital transformation or digitization level is too complex for the agricultural 

carbon emission pathway, and the evaluation system of rural digitization has not yet formed a 

consensus, this paper refers to the research of Zhu et al[7],and measures the level of agricultural 

digitization with the digital village construction index. 

Reviewing the existing studies, the variables selected for establishing the measurement system of 

digital village construction level are different, but there are some common features. When taking data 

accessibility into account, this research zeroes in on multiple indicators. To evaluate the digital 

transformation, it adopts the entropy weighting method. This evaluation specifically makes use of the 

digital village construction index. The paper then builds a measurement system for digital village 
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construction. The system is based on several second - tier indicators. The construction of this system 

enables a more comprehensive and accurate assessment of the digital village development level. 

2.1.3 Control and mechanism variables 

After extensively reviewing research on factors influencing agricultural carbon emissions and 

carbon intensity, it became evident that a diverse range of control variables were being used. When 

choosing control variables, it’s crucial to prevent multicollinearity. Their selection should be 

grounded in theory rather than relying solely on statistical significance. Similarly, the choice of 

mediating variables must have theoretical backing. 

From the above theoretical analysis, it’s clear that apart from the core explanatory variable—rural 

digital transformation—agricultural carbon emission intensity may be influenced by other factors. 

Thus, variables that could impact agricultural carbon emissions are included as control variables. 

To avoid model covariance issues, this study selects a set of control and mediating variables, 

drawing insights from relevant literature. This approach ensures that the research framework is both 

theoretically sound and statistically robust, laying a solid foundation for accurate analysis of the 

factors affecting agricultural carbon emissions. 

1.2. Data acquisition and description 

2.2.1 Data acquisition 

Panel data (2013–2021) from 30 provinces, cities, autonomous regions, and municipalities are 

sourced from directly under the central government in China from 2013 to 2021. The digitization 

measurement data are collected  from China Statistical Yearbook, China Rural Statistical Yearbook, 

Wind database, National Bureau of Statistics of China and related research reports, and the 

agricultural carbon emission coefficients and other data are from IPCC, Oak Ridge National 

Laboratory, Oak Ridge National Laboratory, Institute of Resource and Ecological Environment, 

Nanjing Agricultural University, H P Duan[8] et al. and Li B et al.  

2.2.2 Descriptive statistics 

The descriptive statistics are shown in Table 2. 

Table 2. Descriptive statistics 

Variable type Name Tickers Intein Nota Max Min Aver Std 

Explained 

variable 
cia y cia + 0.28 0.04 0.14 0.06 

Core 

explanatory 

variables 

ld x  + 0.79 0.03 0.19 0.11 

Control 

variable 
ul a1 riur + 3.56 1.84 2.53 0.36 

 ndo a2 pala + 0.70 0.01 0.13 0.11 

 lam a3 gam + 13353 94 3442.39 2907.46 

 le a4 ay + 9.91 5.86 7.84 0.61 

 saf a5 al + 266.12 3.23 22.01 28.82 

 ef a6 pfs + 0.35 0.15 0.22 0.04 

 acs a7 gsa + 14551.3 46.50 3832.99 3112.83 
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Intermediary 

variable 
ap m1 tp + 1.56 0.87 1.093 0.07 

 wue m2 eia + 92664 1638 33431.3 25515.4 

 is m3 sait + 0.84 0.33 0.56 0.10 

 il m4 ngu + 35340 18 3911.43 5355.19 

 

Notes: intein: Interpretative indicators; nota: Notation; sams: Sample size; min: Minimum; max: 

Maximum; std: Standard deviation; cia: Carbon intensity of agriculture; ld: Level of digitization; 

Rudige: Digital rural development index; ul: Urbanization level; uiur: Urban-rural income ratio; ndo: 

Natural disaster occurrence; pala: Proportion of agricultural land affected; lam: Agricultural 

mechanization level; gam: Gross agricultural machinery power; le: Rural education level; ay: 

Average years of schooling (primary sector); saf: Agricultural finance scale; al: Agricultural loans 

per capita; ef: Financial support extent to agriculture; pfs: Percentage of financial support to 

agriculture; acs: Agricultural cropping structure; gsa: Grain sown area; ap: Agricultural productivity; 

tp: Agricultural total factor productivity; wue: Water use efficiency; eia: Effective irrigated area; is: 

Industrial structure; sait: Share of agriculture in total production value; il: Innovation level; ngu: 

Number of green utility model patents. 

At the same time, in order to avoid inaccurate model results caused by too large a difference in 

data magnitude, the data were uniformly standardized in stata before conducting regression and effect 

calibration. 

1.3. Research hypothesis 

H1: The promotion in the level of rural digital development can significantly curb the expansion 

of the scale of agricultural carbon emissions, and its role in promoting agricultural carbon emission 

reduction is mostly manifested in the two aspects of reducing stock and controlling new generation[9]. 

H2: Digitalization enhance the reduction of agricultural carbon emissions through its influences 

on industrial structure, level of technological innovation and resource use efficiency. 

2. Model building and solving 

2.1. Model construction 

3.1.1 Model construction based on benchmark regression 

The econometric model evaluates digitization’s impact on carbon intensity:   

𝐴𝑐𝑖𝑖𝑡 = 𝑏0 + b1𝑅𝑢d𝑖𝑔𝑒𝑖𝑡  + b2CONTRit + εit                  (3) 

Aci represents the explained variable, denoting the efficiency of carbon emission in agriculture, 

Rudige represents the digitization index, measured by entropy weight method. And CONTR denotes 

covariates. i is the province, t is the time; b is the estimated coefficient, and ε is the error term. 

3.1.2 Modeling based on mediating effects 

In order to test the mediating effect of digital development and production efficiency, and explore 

through which pathway this effect is transmitted, this research was carried out using the method of 

Wen Zhonglin[10], and further discusses the extent of the impact of digital development on the 

efficiency of agricultural carbon emissions under different pathways, mainly from the perspective of 

the industrial structure of agricultural production as well as the level of green innovation on the basis 

of the Ordinary Least Squares (OLS) regression. 

The mechanism validation model of this paper is set as follows: 
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𝐴𝑐𝑖𝑖𝑡 = 𝛼0 + 𝛼1𝑅𝑢𝑑𝑖𝑔𝑒𝑖𝑡 + 𝛼𝑘𝑍 + 𝜇𝑖 + 𝛿𝑖 + 𝜀𝑖𝑡               (4) 

𝑀𝑖𝑡 = 𝛽0 + 𝛽1𝑅𝑢𝑑𝑖𝑔𝑒𝑖𝑡 + 𝛽𝑘𝑍 + 𝜇𝑖 + 𝛿𝑖 + 𝜀𝑖𝑡                (5) 

𝐴𝑐𝑖𝑖𝑡 = 𝛾0 + 𝛾1𝑅𝑢𝑑𝑖𝑔𝑒𝑖𝑡 + 𝛾2𝑀𝑖𝑡 + 𝛾𝑘𝑍 + 𝜇𝑖 + 𝛿𝑖 + 𝜀𝑖𝑡           (6) 

2.2. Mechanism Test Outcomes 

3.2.1 Baseline regression outcomes 

To assess the influence of digitalization on agricultural carbon emission intensity and ensure the 

robustness of the results, this study employs a step-by-step approach within the baseline framework, 

with detailed outcomes summarized in Table 3. Column (1) presents univariate regression results for 

digitization, while Column (2) integrates covariates to establish the comprehensive model.   

Regression coefficients for rural digitization consistently demonstrate statistically significant 

negative correlations, confirming its inhibitory role in agricultural carbon emissions. Model fit 

progressively improves with incremental variable inclusion. Among covariates, most exhibit positive 

coefficients and statistical significance across thresholds, except for agricultural cropping structure, 

which remains insignificant. This implies that current policy frameworks predominantly emphasize 

"output maximization," as evidenced by variables like financial subsidies and education levels 

inadvertently fostering high-carbon practices. Such findings reveal a temporal disconnect from the 

Ministry of Agriculture (MARD)’s "quality-driven transition" strategy, underscoring the urgency of 

low-carbon incentive realignment.    

Table 3. Regression results 

Variables (1) (2) 

cons 
0.244*** 

(7.844) 

0.029 

(1.324) 

x 
-0.566*** 

(-2.868) 

-0.129*** 

(-5.192) 

a1  
0.062*** 

(-3.157) 

a2  
0.05** 

(-2.474) 

a3  
0.074*** 

(-2.968) 

a4  
0.095*** 

(-4.014) 

a5  
0.06* 

(-1.693) 

a6  
0.109*** 

(-5.909) 

a7  
-0.007 

(-0.272) 

Individual fixed effect no no 

Time fixed effect no no 

N 270 270 

R2 0.248 0.293 

Adj R2 0.218 0.271 

Note: ***, **, * represent 1%, 5%, and 10% significance levels, respectively, with t-values in 

parentheses. This rule is continued below.          

3.2.2 Mechanism test results 

In this paper, a two-step approach is used to develop the test of mediation effects. 
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The results of the mediation effect test are shown in Table 4. Column (1) shows that the 

improvement of the development level of digital villages is conducive to the reduction of the intensity 

of agricultural carbon emissions. Columns (2) to (5) show that the regression coefficients of the effect 

of digital village development on other intermediary variables are all significantly positive at the 1% 

level, with the most obvious effect of promoting technological progress, followed by scale operation, 

and energy conservation and environmental protection last, under the condition of considering the 

fixed effects and control variables. This may be due to the fact that digital rural development relies 

on cloud computing, big data, Internet of Things and other emerging technologies to digitally reshape 

the traditional infrastructure of agriculture, which in turn can change the inherent mode of production 

to a certain extent. The empirical results show that digital rural development significantly expands 

the level of appropriate scale operation of agriculture, promotes the process of energy conservation 

and environmental protection, accelerates the use of agricultural innovation and science and 

technology, and reduces the consumption of energy and materials and pollutant emissions while 

enhancing the operational efficiency of agricultural production and the efficiency of the allocation of 

factor resources, which in turn effectively reduces the intensity of agricultural carbon emissions, and 

Hypothesis 2 is proved. 

Table 4. Mechanism test results 

 

(1) 

Total 

effect 

 

(2) 

Scale 

operation 

effect 

(3) 

Energy saving 

and 

environmental 

protection 

effect 

(4) 

Structural 

optimization 

effect 

(5) 

Technological 

progress 

effect 

x 

-

0.168*** 

(-5.43) 

     

m1 

 

 
0.388*** 

(3.38) 
   

m2   

0.028*** 

(6.12) 

 

  

m3 

 

   
0.041 

(0.92) 
 

m4     
0.723*** 

(17.21) 

Control variables yes  yes yes yes yes 

Time/individual fixed 

effect 
yes  yes yes yes yes 

N 270  270 270 270 270 

Adj R2 0.379  0.1199 0.6614 0.0787 0.6702 
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2.3. Robustness validation 

Table 5. Robustness validation results 

 
(1) 

 
 

(2) 

 

(3) 

 

x 
-0.157*** 

(0.028) 
 

-0.198*** 

(0.039) 

-0.169*** 

(0.033) 

Control variables yes  yes yes 

Time/individual 

fixed effect 
yes  yes yes 

N 270  270 270 

Adj R2 0.24  0.292 0.275 

 

Table 5 outlines robustness evaluations conducted via temporal sample restriction, alternative 

explained variable operationalization (adopting Ding Baogen’s [11] plantation-centric carbon 

accounting framework), and 1% data truncation. Columns (1)-(3) correspond to regressions excluding 

2013–2014 data, revising variable quantification methodologies, and tail-trimmed datasets, 

respectively. Core variables retain significance at the 1% threshold, robustly corroborating baseline 

conclusions. 

2.4.  Heterogeneity test 

To unravel geographic disparities in ecological consumption’s role in rural revitalization, 

heterogeneity analyses are performed across grain functional zones and topographic divisions (Table 

6), drawing methodologies from Tian et al. 

3.4.1 spatial divergence analysis based on functional grain zone areas 

Despite nationwide carbon mitigation from rural digitization, regional discrepancies in resource 

endowments, economic development, and production practices induce spatial divergence. Classifying 

30 regions into primary production zones, marketing zones, and balanced zones (per China Statistical 

Yearbook criteria), results reveal significant emission suppression in production and balanced zones 

but minimal impact in marketing zones, likely due to divergent resource allocation frameworks and  

technology diffusion barriers. This suggests that in China, the results of digital village construction 

have a stronger inhibitory effect on agricultural carbon emissions in areas with larger agricultural 

production scale, while the inhibitory effect is relatively insignificant in areas with smaller scale. 

Moreover, the coefficients do not seem to be a simple linear relationship between the larger scale of 

production and the stronger inhibition. 
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Table 6. Heterogeneity test results 

 

(1) 

Major 

agricultural 

region 

(2) 

Main 

grain 

marketing 

area 

(3) 

Balance of 

production 

and 

marketing 

area 

(4) 

Flat 

terrain 

(5) 

Uneven 

terrain 

(6) 

Plantation 

(7) 

Livestock 

areas 

x 
-0.212*** 

(-4.389) 

-0.003 

(-0.047) 

-0.564*** 

(-4.68) 

-

0.125*** 

(-4.284) 

-

0.374*** 

(-4.373) 

-0.129*** 

(0.025) 

-0.157*** 

(0.028) 

Control 

variables 
yes yes yes yes yes yes yes 

Time/ 

Province 

fixed 

effect 

yes yes yes yes yes yes yes 

N 117 63 90 99 171 45 225 

Adjusted 

R2 
0.432 0.298 0.557 0.231 0.656 0.752 0.24 

3.4.2 Topography-based heterogeneity tests 

Digitalization significantly reduces emissions in both flat and mountainous regions, yet coefficient 

magnitudes are notably larger in mountainous areas. While uneven terrain complicates digital 

infrastructure deployment, successful implementation drives innovative production practices and 

stronger emission suppression. In contrast, flat regions, with pre-existing infrastructure saturation, 

exhibit diminishing marginal returns. Additionally, policy resource incline and diversified production 

modes in mountainous areas enhance carbon reduction efficacy.   

3.4.3 Heterogeneity of agricultural production objects 

Using the 400-mm isoprecipitation line referring to Yang Xue et al.'s study[12] to demarcate crop 

and livestock zones, results (Columns 6-7) show significant emission reduction in both sectors at the 

1% level, with larger absolute coefficients in livestock zones. This highlights digitization’s stronger 

carbon mitigation potential in pastoral systems, likely due to optimized resource integration and 

policy prioritization. It shows that digital rural development can reduce the intensity of agricultural 

carbon emissions in both plantation and livestock zones, and the effect is better in livestock zones 

than in plantation zones. 

3. Conclusions 

Leveraging provincial panel data (2013–2021), this study demonstrates rural digitization’s 

suppression of agricultural carbon intensity via industrial restructuring and water-use efficiency gains, 

and the effect is more significant in mountainous areas, production and marketing balance areas and 

livestock areas, but the emission reduction effect is weaker in main grain production areas, and the 

tilting of policy resources and the appropriateness of production methods are the key. However, the 

current financial support to agriculture and education inputs still favor the traditional high-carbon 

mode, which may exacerbate carbon emissions in the short term. Policy recommendations include: 

(1) differentiated digital infrastructure investments targeting mountainous and pastoral regions; 

(2)cross-regional collaboration platforms to foster technology spillovers; (3) green technology 

integration into agricultural subsidies and education systems to accelerate low-carbon transitions.   
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