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Abstract. In the increasingly competitive global market environment, companies face multiple 
challenges in production decision-making, including resource optimization, cost control, and 
uncertainty management. Traditional production decision-making methods rely on empirical 
judgment or simplified models, which struggle to handle the dynamism and randomness in complex 
production processes. Existing optimization algorithms also have limitations such as overly simplified 
models, high computational complexity, and inadequate handling of uncertain factors. To address 
these issues, this paper proposes an integrated decision framework that combines multi-stage 
dynamic programming, Monte Carlo simulation, and greedy algorithms. By dividing production 
stages through dynamic programming and establishing a global optimization model, Monte Carlo 
simulation quantifies the impact of random factors, while the greedy algorithm quickly solves local 
optimal strategies to reduce computational complexity. Experiments show that this method can 
effectively balance inspection, disassembly, and replacement costs in scenarios involving 
component assembly and multi-process semi-finished product production. Additionally, this paper 
reduces resource waste through a pre-interception mechanism for defect rates, enhancing the 
company's adaptability to market uncertainties. The research provides a decision tool with both 
efficiency and precision for multi-objective optimization in complex production systems, helping 
companies achieve dual goals of minimizing costs and maximizing profits in dynamic environments. 
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1. Introduction 

In today's highly competitive market environment, companies face the challenge of making 

complex and dynamic production decisions. In the early days, production decisions were primarily 

based on experience and intuition, lacking systematic approaches. With the rise of scientific 

management theory, there was a greater emphasis on standardization and efficiency, which influenced 

early production planning and control [1]. How to efficiently allocate resources, optimize production 

processes, and reduce costs to maintain a competitive edge in the market is a critical issue that every 

company must seriously consider. Production decision-making issues cover the entire process from 

raw material procurement to product delivery, involving numerous stages and factors, thus requiring 

the use of scientific methods and tools for analysis and optimization. Algorithms for solving 

production decision problems continue to emerge, providing diverse decision support for companies. 

Currently, research on production decision-making primarily focuses on using various 

optimization algorithms to improve production efficiency and reduce costs. Some scholars employ 

dynamic programming methods to address decision-making issues in multi-stage production 

processes, breaking down complex production processes into multiple stages and achieving overall 

optimization by finding the optimal decisions at each stage. Rafflesia et al. [2] proposed a decision 

framework aimed at solving complex production and cost structure problems to ensure profit 

maximization under different conditions. Other scholars attempt to combine Monte Carlo simulation 

with dynamic programming to handle uncertainties in production processes. Cruz et al. [3] for 

instance, integrate mathematical models with Monte Carlo simulation, specifically considering 

random and non-stationary demand as a tool for planning under uncertain demand conditions, thereby 
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reducing waste rates within the planning scope. Olanrele et al. [4] introduced a new algorithm that 

combines linear programming and Monte Carlo simulation to manage uncertainties in fast-moving 

consumer goods production plans and minimize costs. Additionally, some scholars use genetic 

algorithms to optimize decision-making issues in multi-process production. Wang et al. [5], for 

example, used genetic algorithms to optimize the assembly process of key components in the 

production of popular electronic products, solving the problem of calculating sampling inspection 

quantities. 

Despite significant progress in the study of production decision-making problems, existing 

research methods also have some limitations. First, many models are overly simplified and fail to 

accurately capture the complexity of actual production processes. Second, some algorithms have high 

computational costs, making them unsuitable for large-scale production decision problems. 

Additionally, there is insufficient consideration of various uncertainties in the production process, 

such as market demand fluctuations and equipment failures. The application of analytical 

optimization methods in production and inventory management is limited, primarily because simple 

functions (usually linear or quadratic) are used to model real systems in order to obtain optimal 

solutions [6-10]. 

To overcome the aforementioned issues, this paper proposes an enterprise production decision-

making method based on multi-stage dynamic programming and optimization algorithms. The 

method first uses hypothesis testing to evaluate the quality status during production, then combines a 

minimum cost flow model to optimize the production process and reduce costs. At the same time, 

Monte Carlo simulation is employed to model various uncertainties in the production process, and 

dynamic programming and greedy algorithms are used to formulate optimal production decisions. By 

integrating these methods, this paper aims to provide enterprises with a more comprehensive, efficient, 

and practical production decision support tool, helping them gain a greater advantage in fierce market 

competition. 

2. Methods 

2.1. The basic function of the Monte Carlo simulation  

Monte Carlo simulation is a numerical calculation method based on probability and statistical 

theory and random sampling technology. Its core idea is to generate a large number of independent 

and identically distributed random samples, and use the law of large numbers (Law of Large Numbers) 

and central limit theorem (Central Limit Theorem) to approximate the statistical characteristics of 

complex systems. 

The standardization process for Monte Carlo simulation includes the following steps: 

(1) The research objectives are defined and mathematical models are established to describe the 

uncertain characteristics of the system. 

(2) Determine the probability distribution (such as normal distribution, uniform distribution) and 

parameters of the input variables to ensure that the generated random numbers conform to physical 

or statistical laws. 

(3) Random number generation and sampling: The sample is generated by a pseudo-random 

number generator, and the sampling of complex distributions is realized by inverse transform method 

(Inverse Transform), acceptance-rejection method (Accept-Reject) or Markov chain Monte Carlo 

(MCMC). 

(4) System simulation and data acquisition: input the random sample into the model for parallel 

simulation, and record the output results 

(5) Statistical analysis and error evaluation: calculate mean, variance, quantile and other statistics, 

and quantify the estimation error through confidence interval or standard deviation. 
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2.2. Introduction to greedy algorithm  

Greedy algorithm is a heuristic algorithm based on local optimal choice. It selects the optimal 

decision in the current state (greedy strategy) step by step to approach the global optimal solution. Its 

characteristics are no backtracking mechanism and depends on the characteristics of the problem to 

ensure the global optimality. The algorithm process is shown in Figure 1. 

 

Figure 1. Greedy Algorithm flowchart 

The core principle of greedy algorithm 

The effectiveness of greedy algorithms depends on two key properties: 

Greedy choice property (Greedy Choice Property) 

The local optimal choice of each step must be able to derive the global optimal solution, and the 

choice cannot be traced back. For example, in the activity selection problem, the earliest end of the 

activity is preferred to reserve more time resources for subsequent steps. 

Optimal substructure (Optimal Substructure) 

The optimal solution of the problem contains the optimal solution of the subproblem. For example, 

in the backpack problem, if the current item selection is optimal, then the subproblem selection under 

the remaining capacity should also constitute the optimal solution. 

3. Results 

3.1. The situation of direct assembly of finished products with spare parts 

Assuming a company produces a popular electronic product that requires the purchase of two types 

of components (Component 1 and Component 2), and assembles them into a finished product. In the 

assembled finished product, if just one component is defective, the entire product will be defective; 

even if both components are qualified, the assembled product may still be defective. For defective 

products, the company can choose to scrap them or disassemble them. The disassembly process will 

not damage the components but will incur disassembly costs. 

Before assembling the components, the company needs to use sampling inspection methods to 

decide whether to accept the batch of components purchased from suppliers. Therefore, determining 

the sample size for the sampling inspection directly affects the efficiency and cost of subsequent 

production. Assuming that the component pass rate roughly follows a normal distribution, the sample 

size can be calculated using the normal distribution formula: 
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Where Z is the critical value under the standard normal distribution; p is the nominal defect rate 

of the parts; E is the allowable error. 

Figure 2 shows how the defect rate varies in the confidence interval of 90% and 95% reliability 

for different sample sizes. 

 

Figure 2. Confidence Intervals VS Sample Size 

As the sample size increases, the width of the confidence interval (i.e., the uncertainty of the 

estimate) gradually decreases. This is because larger samples lead to higher precision in estimation, 

resulting in a narrower confidence interval. A 95% confidence interval is wider than a 90% confidence 

interval, indicating that at a higher confidence level, we need a larger sample size to achieve the same 

confidence interval width. 

Now assume that we know six situations of the defect rate of two kinds of spare parts and finished 

products as shown in Table 1. We are required to make decisions for each stage of the production 

process: 

Table 1. Situations of parts and finished products 

Circumstances 
Component 1 Component 2 End Product Defective Product 

DP P TC DP P TC DP AC TC MP RL DC 

1 10% 4 2 10% 18 3 10% 6 3 56 6 5 

2 20% 4 2 20% 18 3 20% 6 3 56 6 5 

3 10% 4 2 10% 18 3 10% 6 3 56 30 5 

4 20% 4 1 20% 18 1 20% 6 2 56 30 5 

5 10% 4 8 20% 18 1 10% 6 2 56 10 5 

6 5% 4 2 5% 18 3 5% 6 3 56 10 40 

 

Through dynamic programming algorithms, the production process of finished goods is broken 

down into three stages: component inspection for qualification, component qualification testing, and 

assembly completion, followed by finished product inspection for qualification and disassembly. 

Decisions at each stage are optimized recursively to gradually achieve the goal of minimizing costs 

and maximizing profits. By combining the optimal solutions from each stage, companies can make 

the most advantageous decisions, ensuring production efficiency while minimizing costs and 

maximizing profits. 

Based on the above problems and assumptions, the following mathematical model is established: 

 min iTC A B C = + + +                                (2) 
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The objective function (2) represents the minimum total cost; (3) represents the inspection cost of 

the spare parts in the inspection stage; (4) ~ (7) represents the inspection, assembly and disassembly 

costs of the finished products; (8) represents the replacement cost of unqualified finished products; 

(9) represents the decision state: 1 means execution, 0 means no execution. 

The above dynamic programming algorithm mainly focuses on the minimization of total cost. This 

paper combines the minimum cost flow model to maximize the profit at the same time, and optimizes 

the production flow in each stage to minimize the cost under the premise of meeting the production 

demand, so as to maximize the profit in the production process. The specific flow network is defined 

in Table 2. 

Table 2. Composition and interpretation of minimum cost flow 

Form Paraphrase 

Edge Edge has unit flow and cost 

Sink Nodes End point where finished product is sold and qualified 

Panel Point Every network point includes parts inspection, assembly, etc. 

Originating Node Starting point for production, purchase of parts, determines initial quantity. 

Traffic Demand Node costs and required samples determined. 

 

At the same time, this paper randomly generates different situations based on Monte Carlo 

simulation to simulate whether different numbers of detection, disassembly and replacement are 

carried out at different stages of the product, so as to estimate the impact of different decision-making 

methods on the cost and profit of the enterprise. 

The solution results of the specific model are shown in Table 3. 

Table 3. The solution results of the specific model 

Circumstances 1Detection 2Detection Inspection Disassembly Cost Income Profit 

1 0 0 1 1 2657 4409 1752 

2 0 0 1 1 3044 4936 1892 

3 0 0 1 1 2657 4409 1752 

4 0 0 1 1 2899 4707 1808 

5 0 0 1 1 2722 4324 1602 

6 0 0 1 0 2982 4788 1806 
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3.2. Increase the semi-finished product assembly process 

In real production processes, multiple procedures and various components are often involved. 

Suppose an additional step is added between the assembly of components into semi-finished products 

and the final assembly into finished products. In such cases, making decisions for each stage of the 

production process becomes more complex. For example, if certain conditions apply to components 

and semi-finished products as shown in Table 4, and the specific situation of the finished product is 

illustrated in Table 5. 

Table 4. The situation of components and semi-finished products 

Component DP P TC Semi-manufactures DP AC TC DC 

1 10% 2 1 

1 10% 8 4 6 2 10% 8 1 

3 10% 12 2 

4 10% 2 1 

2 10% 8 4 6 5 10% 8 1 

6 10% 12 2 

7 10% 8 1 
3 10% 8 4 6 

8 10% 12 2 

 

Table 5. The situation of the finished product 

DP AC TC DC MP RL 

10% 8 6 10 200 40 

 

For the scenario involving multiple processes and numerous components, this paper employs a 

multi-stage optimization model combined with a greedy algorithm to solve for optimal decisions in 

local areas. The locally optimal decisions are then integrated with dynamic programming to derive 

the overall optimal decision for the entire process. In response to specific circumstances, production 

is divided into three stages: whether components are inspected and semi-finished products are 

assembled, whether semi-finished products are inspected and finished products are assembled, and 

whether finished products are inspected and defective finished products that enter the market are 

dismantled. 

Based on the above specific problems and assumptions, the following model is established: 

 min C iTC A B D = + + + −                          (11) 
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(12) represents the total cost of detection, (13) represents the total cost of assembly, and (14) 

represents the total cost of disassembly, which is a 0-1 variable, where 0 means not to execute and 1 

means to execute. The results obtained by combining Monte Carlo simulation and greedy algorithm 

are shown in Table 6. 
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Table 6. The results 

C1 Detection C2 Detection C3 Detection C4 Detection Cost Income 

0 0 0 0 

6869.4 17997 

C5 Detection C6 Detection C7 Detection C8 Detection 

0 0 0 0 

SM1 Inspection SM2 Inspection SM3 Inspection SM1 Disassembly 

0 0 0 0 

SM2 Disassembly SM3 Disassembly P Inspection P Disassembly 

0 1 1 0 

3.3. Result analysis 

The experimental results show that the multi-stage optimization model proposed in this paper can 

effectively balance cost control and profit enhancement objectives in production decisions. In the 

scenario where components are directly assembled into finished products, dynamic programming 

significantly reduces resource waste caused by fluctuations in defect rates through phased 

optimization of inspection, assembly, and disassembly strategies. Meanwhile, Monte Carlo 

simulation provides risk quantification support for uncertain factors, enhancing the robustness of 

decision-making. The model reduces unnecessary costs while ensuring product quality by flexibly 

adjusting inspection rates and disassembly strategies, thus verifying the feasibility of multi-stage 

collaborative optimization. 

For complex scenarios involving multiple processes with semi-finished product assembly, the 

synergy between greedy algorithms and dynamic programming becomes more prominent. The greedy 

strategy reduces real-time computational complexity through local quick decisions, while dynamic 

programming coordinates resource allocation across stages from a global perspective, avoiding 

overall efficiency losses due to local optimality. However, the model still has room for improvement 

in high defect rates or extreme uncertainty scenarios. Future enhancements could include introducing 

adaptive learning mechanisms or improving the modeling accuracy of stochastic processes to further 

enhance the model's adaptability to complex production chains. Overall, this method provides a 

systematic solution that balances efficiency and precision for multi-objective and multi-constraint 

production decision-making problems.  

4. Conclusions 

This paper comprehensively applies the normal distribution hypothesis, multi-stage dynamic 

programming, Monte Carlo simulation, and greedy algorithm to reasonably simplify calculations 

while enhancing analytical efficiency: using the normal distribution to quickly estimate pass rates, 

combined with dynamic programming to divide into multiple stages for global optimal decision-

making; employing Monte Carlo simulation to handle production uncertainties, generating random 

samples to enhance model adaptability; for complex processes, using the greedy algorithm to rapidly 

solve local optimal solutions, which not only reduces computational complexity but also reduces 

corporate costs through preemptive rejection of defective products, achieving a balance between 

precision and efficiency. 

There are the following room for improvement and optimization: choose a test method closer to 

the actual distribution and optimize the sample size requirements, develop a flexible segmentation 

method to reduce the complexity of dynamic programming, combine local greedy strategy with global 

backtracking mechanism to balance efficiency and result credibility, so as to enhance the robustness 

of the model and decision accuracy. 



Highlights in Business, Economics and Management EAIS 2025 

Volume 57 (2025)  

 

433 

References 

[1] Vasconcelos H, Jörke M, Grunde-McLaughlin M, et al. Explanations can reduce overreliance on ai 

systems during decision-making[J]. Proceedings of the ACM on Human-Computer Interaction, 2023, 

7(CSCW1): 1-38. 

[2] Rafflesia U, Widodo F H, Angraini T. Dynamic programming for an optimization of production 

plan[C]//Journal of Physics: Conference Series. IOP Publishing, 2021, 1731(1): 012032. 

[3] Cruz J A, Salles-Neto L L, Schenekemberg C M. An integrated production planning and inventory 

management problem for a perishable product: optimization and Monte Carlo simulation as a tool for 

planning in scenarios with uncertain demands[J]. Top, 2024, 32(2): 263-303. 

[4] Olanrele O O, Ismaila S O, Adeaga O A, et al. Managing Uncertainty in Production Planning for Fast-

Moving Consumer Goods: A Linear Programming and Monte Carlo Simulation Framework[C]//2023 

International Conference on Science, Engineering and Business for Sustainable Development Goals 

(SEB-SDG). IEEE, 2023, 1: 01-08. 

[5] Wang Y, Yin X. Research on Optimization of Production Decision Based on Dynamic Planning and 

Genetic Algorithm[C]//2024 IEEE 2nd International Conference on Electrical, Automation and Computer 

Engineering (ICEACE). IEEE, 2024: 843-848. 

[6] Maitra S. A system-dynamic based simulation and Bayesian optimization for inventory management[J]. 

arXiv preprint arXiv:2402.10975, 2024. 

[7] Maitra S, Mishra V, Kundu S. a Novel Approach with Monte-Carlo Simulation and Hybrid Optimization 

Approach for Inventory Management with Stochastic Demand[J]. arXiv preprint arXiv:2310.01079, 2023. 

[8] Perez H D, Hubbs C D, Li C, et al. Algorithmic approaches to inventory management optimization[J]. 

Processes, 2021, 9(1): 102. 

[9] Farizal F, Gabriel D S, Rachman A, et al. Production scheduling optimization to minimize makespan and 

the number of machines with mixed integer linear programming[C]//IOP Conference Series: Materials 

Science and Engineering. IOP Publishing, 2021, 1041(1): 012046. 

[10] Shi C J L, Bugtai N T, Billones R K C. Multi-Period Inventory Management Optimization Using Integer 

Linear Programming: A Case Study on Plywood Distribution[C]//2022 IEEE 14th International 

Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, 

Environment, and Management (HNICEM). IEEE, 2022: 1-5. 


