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Abstract. In the increasingly competitive global market environment, companies face multiple
challenges in production decision-making, including resource optimization, cost control, and
uncertainty management. Traditional production decision-making methods rely on empirical
judgment or simplified models, which struggle to handle the dynamism and randomness in complex
production processes. Existing optimization algorithms also have limitations such as overly simplified
models, high computational complexity, and inadequate handling of uncertain factors. To address
these issues, this paper proposes an integrated decision framework that combines multi-stage
dynamic programming, Monte Carlo simulation, and greedy algorithms. By dividing production
stages through dynamic programming and establishing a global optimization model, Monte Carlo
simulation quantifies the impact of random factors, while the greedy algorithm quickly solves local
optimal strategies to reduce computational complexity. Experiments show that this method can
effectively balance inspection, disassembly, and replacement costs in scenarios involving
component assembly and multi-process semi-finished product production. Additionally, this paper
reduces resource waste through a pre-interception mechanism for defect rates, enhancing the
company's adaptability to market uncertainties. The research provides a decision tool with both
efficiency and precision for multi-objective optimization in complex production systems, helping
companies achieve dual goals of minimizing costs and maximizing profits in dynamic environments.
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1. Introduction

In today's highly competitive market environment, companies face the challenge of making
complex and dynamic production decisions. In the early days, production decisions were primarily
based on experience and intuition, lacking systematic approaches. With the rise of scientific
management theory, there was a greater emphasis on standardization and efficiency, which influenced
early production planning and control [1]. How to efficiently allocate resources, optimize production
processes, and reduce costs to maintain a competitive edge in the market is a critical issue that every
company must seriously consider. Production decision-making issues cover the entire process from
raw material procurement to product delivery, involving numerous stages and factors, thus requiring
the use of scientific methods and tools for analysis and optimization. Algorithms for solving
production decision problems continue to emerge, providing diverse decision support for companies.

Currently, research on production decision-making primarily focuses on using various
optimization algorithms to improve production efficiency and reduce costs. Some scholars employ
dynamic programming methods to address decision-making issues in multi-stage production
processes, breaking down complex production processes into multiple stages and achieving overall
optimization by finding the optimal decisions at each stage. Rafflesia et al. [2] proposed a decision
framework aimed at solving complex production and cost structure problems to ensure profit
maximization under different conditions. Other scholars attempt to combine Monte Carlo simulation
with dynamic programming to handle uncertainties in production processes. Cruz et al. [3] for
instance, integrate mathematical models with Monte Carlo simulation, specifically considering
random and non-stationary demand as a tool for planning under uncertain demand conditions, thereby
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reducing waste rates within the planning scope. Olanrele et al. [4] introduced a new algorithm that
combines linear programming and Monte Carlo simulation to manage uncertainties in fast-moving
consumer goods production plans and minimize costs. Additionally, some scholars use genetic
algorithms to optimize decision-making issues in multi-process production. Wang et al. [5], for
example, used genetic algorithms to optimize the assembly process of key components in the
production of popular electronic products, solving the problem of calculating sampling inspection
quantities.

Despite significant progress in the study of production decision-making problems, existing
research methods also have some limitations. First, many models are overly simplified and fail to
accurately capture the complexity of actual production processes. Second, some algorithms have high
computational costs, making them unsuitable for large-scale production decision problems.
Additionally, there is insufficient consideration of various uncertainties in the production process,
such as market demand fluctuations and equipment failures. The application of analytical
optimization methods in production and inventory management is limited, primarily because simple
functions (usually linear or quadratic) are used to model real systems in order to obtain optimal
solutions [6-10].

To overcome the aforementioned issues, this paper proposes an enterprise production decision-
making method based on multi-stage dynamic programming and optimization algorithms. The
method first uses hypothesis testing to evaluate the quality status during production, then combines a
minimum cost flow model to optimize the production process and reduce costs. At the same time,
Monte Carlo simulation is employed to model various uncertainties in the production process, and
dynamic programming and greedy algorithms are used to formulate optimal production decisions. By
integrating these methods, this paper aims to provide enterprises with a more comprehensive, efficient,
and practical production decision support tool, helping them gain a greater advantage in fierce market
competition.

2. Methods

2.1. The basic function of the Monte Carlo simulation

Monte Carlo simulation is a numerical calculation method based on probability and statistical
theory and random sampling technology. Its core idea is to generate a large number of independent
and identically distributed random samples, and use the law of large numbers (Law of Large Numbers)
and central limit theorem (Central Limit Theorem) to approximate the statistical characteristics of
complex systems.

The standardization process for Monte Carlo simulation includes the following steps:

(1) The research objectives are defined and mathematical models are established to describe the
uncertain characteristics of the system.

(2) Determine the probability distribution (such as normal distribution, uniform distribution) and
parameters of the input variables to ensure that the generated random numbers conform to physical
or statistical laws.

(3) Random number generation and sampling: The sample is generated by a pseudo-random
number generator, and the sampling of complex distributions is realized by inverse transform method
(Inverse Transform), acceptance-rejection method (Accept-Reject) or Markov chain Monte Carlo
(MCMC).

(4) System simulation and data acquisition: input the random sample into the model for parallel
simulation, and record the output results

(5) Statistical analysis and error evaluation: calculate mean, variance, quantile and other statistics,
and quantify the estimation error through confidence interval or standard deviation.
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2.2. Introduction to greedy algorithm

Greedy algorithm is a heuristic algorithm based on local optimal choice. It selects the optimal
decision in the current state (greedy strategy) step by step to approach the global optimal solution. Its
characteristics are no backtracking mechanism and depends on the characteristics of the problem to
ensure the global optimality. The algorithm process is shown in Figure 1.

‘ Input Problem Instance ‘
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Sort by Optimization Metric

Any unprocessed items?
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’ Select current optimal solution
l No

Update state

‘ Output solution set %

Figure 1. Greedy Algorithm flowchart

The core principle of greedy algorithm

The effectiveness of greedy algorithms depends on two key properties:

Greedy choice property (Greedy Choice Property)

The local optimal choice of each step must be able to derive the global optimal solution, and the
choice cannot be traced back. For example, in the activity selection problem, the earliest end of the
activity is preferred to reserve more time resources for subsequent steps.

Optimal substructure (Optimal Substructure)

The optimal solution of the problem contains the optimal solution of the subproblem. For example,
in the backpack problem, if the current item selection is optimal, then the subproblem selection under
the remaining capacity should also constitute the optimal solution.

3. Results

3.1. The situation of direct assembly of finished products with spare parts

Assuming a company produces a popular electronic product that requires the purchase of two types
of components (Component 1 and Component 2), and assembles them into a finished product. In the
assembled finished product, if just one component is defective, the entire product will be defective;
even if both components are qualified, the assembled product may still be defective. For defective
products, the company can choose to scrap them or disassemble them. The disassembly process will
not damage the components but will incur disassembly costs.

Before assembling the components, the company needs to use sampling inspection methods to
decide whether to accept the batch of components purchased from suppliers. Therefore, determining
the sample size for the sampling inspection directly affects the efficiency and cost of subsequent
production. Assuming that the component pass rate roughly follows a normal distribution, the sample
size can be calculated using the normal distribution formula:

_Z°-p(l-p)

n=—->rrr— (D
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Where Z is the critical value under the standard normal distribution; p is the nominal defect rate
of the parts; E is the allowable error.

Figure 2 shows how the defect rate varies in the confidence interval of 90% and 95% reliability
for different sample sizes.

Confidence Intervals (90% vs 95%) vs Sample Size (Defect Rate=10%)
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Figure 2. Confidence Intervals VS Sample Size

As the sample size increases, the width of the confidence interval (i.e., the uncertainty of the
estimate) gradually decreases. This is because larger samples lead to higher precision in estimation,
resulting in a narrower confidence interval. A 95% confidence interval is wider than a 90% confidence
interval, indicating that at a higher confidence level, we need a larger sample size to achieve the same
confidence interval width.

Now assume that we know six situations of the defect rate of two kinds of spare parts and finished
products as shown in Table 1. We are required to make decisions for each stage of the production
process:

Table 1. Situations of parts and finished products

Circumstances Component 1 | Component 2 End Product Defective Product

DP |[P|TC| DP | P |TC| DP |AC|TC | MP| RL DC

1 10% (4| 2 |10% |18 ] 3 | 10% | 6 | 3 | 56 6 5

2 20% | 4] 2 |20% (18| 3 |20% | 6 | 3 | 56 6 5

3 10% (4| 2 |10% [ 18| 3 | 10% | 6 | 3 | 56 30 5

4 20% 4] 1 |20% |18 | 1 |20% | 6 | 2 | 56 30 5

5 10% (4| 8 |20% |18 | 1 [10% | 6 | 2 | 56 10 5

6 5% 141 2 | 5% [ 18] 3 | 5% | 6 | 3 | 56 10 40

Through dynamic programming algorithms, the production process of finished goods is broken
down into three stages: component inspection for qualification, component qualification testing, and
assembly completion, followed by finished product inspection for qualification and disassembly.
Decisions at each stage are optimized recursively to gradually achieve the goal of minimizing costs
and maximizing profits. By combining the optimal solutions from each stage, companies can make
the most advantageous decisions, ensuring production efficiency while minimizing costs and
maximizing profits.

Based on the above problems and assumptions, the following mathematical model is established:

minTC =A+B+C+a (2)
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A=>aW, 3)
i=1
B=B,+B,+B, “4)
B, =D -W, (5
2
B, =[[{t-[1-p-(1-W)]}-b, (6)
i=1
B,=Db,-W, (7)
C=(1-W,)-p,-c ®)
W, =0orl 9)
0<p,<lLw>0 (10)

The objective function (2) represents the minimum total cost; (3) represents the inspection cost of
the spare parts in the inspection stage; (4) ~ (7) represents the inspection, assembly and disassembly
costs of the finished products; (8) represents the replacement cost of unqualified finished products;
(9) represents the decision state: 1 means execution, 0 means no execution.

The above dynamic programming algorithm mainly focuses on the minimization of total cost. This
paper combines the minimum cost flow model to maximize the profit at the same time, and optimizes
the production flow in each stage to minimize the cost under the premise of meeting the production
demand, so as to maximize the profit in the production process. The specific flow network is defined

in Table 2.
Table 2. Composition and interpretation of minimum cost flow
Form Paraphrase
Edge Edge has unit flow and cost
Sink Nodes End point where finished product is sold and qualified

Panel Point

Every network point includes parts inspection, assembly, etc.

Originating NodelStarting point for production, purchase of parts, determines initial quantity.

Traffic Demand

Node costs and required samples determined.

At the same time, this paper randomly generates different situations based on Monte Carlo
simulation to simulate whether different numbers of detection, disassembly and replacement are
carried out at different stages of the product, so as to estimate the impact of different decision-making
methods on the cost and profit of the enterprise.

The solution results of the specific model are shown in Table 3.

Table 3. The solution results of the specific model

Circumstances|l Detection2Detection/InspectionDisassembly|Cost[IncomelProfit
1 0 0 1 1 2657 4409 |1752
2 0 0 1 1 3044, 4936 |1892
3 0 0 1 1 2657 4409 1752
4 0 0 1 1 2899 4707 |1808
5 0 0 1 1 2722 4324 11602
6 0 0 1 0 2982 4788 1806
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3.2. Increase the semi-finished product assembly process

In real production processes, multiple procedures and various components are often involved.
Suppose an additional step is added between the assembly of components into semi-finished products
and the final assembly into finished products. In such cases, making decisions for each stage of the
production process becomes more complex. For example, if certain conditions apply to components
and semi-finished products as shown in Table 4, and the specific situation of the finished product is
illustrated in Table 5.

Table 4. The situation of components and semi-finished products

Component | DP | P | TC | Semi-manufactures | DP | AC | TC | DC
1 10% ] 2 | 1
2 10% | 8 | 1 1 10%| 8 | 4 | 6
3 10% [ 12| 2
4 10% ] 2 | 1
5 10% | 8 | 1 2 10%| 8 | 4 | 6
6 10% [ 12| 2
7 10% | 8 | 1
2 0% (121 2 3 10%| 8 | 4 | 6

Table 5. The situation of the finished product

DP |AC|TC | DC | MP | RL
10% | 8 6 | 10 {200 ] 40

For the scenario involving multiple processes and numerous components, this paper employs a
multi-stage optimization model combined with a greedy algorithm to solve for optimal decisions in
local areas. The locally optimal decisions are then integrated with dynamic programming to derive
the overall optimal decision for the entire process. In response to specific circumstances, production
is divided into three stages: whether components are inspected and semi-finished products are
assembled, whether semi-finished products are inspected and finished products are assembled, and
whether finished products are inspected and defective finished products that enter the market are
dismantled.

Based on the above specific problems and assumptions, the following model is established:

mnTC=A+B+C+D-w (11)
N M
A=>D,-d;+ > E -g+F-f (12)
=1 =1
M
B=>c-(1-p) (13)
n=1
C=>g (14)

(12) represents the total cost of detection, (13) represents the total cost of assembly, and (14)
represents the total cost of disassembly, which is a 0-1 variable, where 0 means not to execute and 1
means to execute. The results obtained by combining Monte Carlo simulation and greedy algorithm
are shown in Table 6.
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Table 6. The results
C1 Detection C2 Detection C3 Detection C4 Detection Cost | Income
0 0 0 0
CS5 Detection C6 Detection C7 Detection C8 Detection
0 0 0 0
SMI Inspection SM2 Inspection | SM3 Inspection | SM1 Disassembly | 6869.4 | 17997
0 0 0 0
SM2 Disassembly | SM3 Disassembly | P Inspection P Disassembly
0 1 1 0

3.3. Result analysis

The experimental results show that the multi-stage optimization model proposed in this paper can
effectively balance cost control and profit enhancement objectives in production decisions. In the
scenario where components are directly assembled into finished products, dynamic programming
significantly reduces resource waste caused by fluctuations in defect rates through phased
optimization of inspection, assembly, and disassembly strategies. Meanwhile, Monte Carlo
simulation provides risk quantification support for uncertain factors, enhancing the robustness of
decision-making. The model reduces unnecessary costs while ensuring product quality by flexibly
adjusting inspection rates and disassembly strategies, thus verifying the feasibility of multi-stage
collaborative optimization.

For complex scenarios involving multiple processes with semi-finished product assembly, the
synergy between greedy algorithms and dynamic programming becomes more prominent. The greedy
strategy reduces real-time computational complexity through local quick decisions, while dynamic
programming coordinates resource allocation across stages from a global perspective, avoiding
overall efficiency losses due to local optimality. However, the model still has room for improvement
in high defect rates or extreme uncertainty scenarios. Future enhancements could include introducing
adaptive learning mechanisms or improving the modeling accuracy of stochastic processes to further
enhance the model's adaptability to complex production chains. Overall, this method provides a
systematic solution that balances efficiency and precision for multi-objective and multi-constraint
production decision-making problems.

4. Conclusions

This paper comprehensively applies the normal distribution hypothesis, multi-stage dynamic
programming, Monte Carlo simulation, and greedy algorithm to reasonably simplify calculations
while enhancing analytical efficiency: using the normal distribution to quickly estimate pass rates,
combined with dynamic programming to divide into multiple stages for global optimal decision-
making; employing Monte Carlo simulation to handle production uncertainties, generating random
samples to enhance model adaptability; for complex processes, using the greedy algorithm to rapidly
solve local optimal solutions, which not only reduces computational complexity but also reduces
corporate costs through preemptive rejection of defective products, achieving a balance between
precision and efficiency.

There are the following room for improvement and optimization: choose a test method closer to
the actual distribution and optimize the sample size requirements, develop a flexible segmentation
method to reduce the complexity of dynamic programming, combine local greedy strategy with global
backtracking mechanism to balance efficiency and result credibility, so as to enhance the robustness
of the model and decision accuracy.
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