AI Integration in Scientific and Clinical Research Management: Cost Reduction, Decision-Making and Leadership

Authors

  • Weiqi Jin

DOI:

https://doi.org/10.54097/acagt923

Keywords:

artificial intelligence, machine learning, Artificial intelligence labor training

Abstract

This essay investigates whether artificial intelligence can help the management department to reduce costs and decision-making within scientific and clinical research organizations. The research subject is mainly scientific and clinical research organizations, with the specific case study of Thermo Fisher Scientific. This case study examines the real-life application of AI within the company, showing AI’s ability to increase productivity, reduce costs, improve decision-making, and change leadership style. Looking into the recent literature, the essay discussed how AI such as Machine Learning and Deep Learning is implicated in the scientific and clinical field. Key challenges include high upfront costs, lack of technology experts, and concerns about data privacy. This essay concludes by providing possible solutions to cope with these challenges, which include AI training in labor, further research data on AI implementation in the real world and strict regulation on AI data privacy.

Downloads

Download data is not yet available.

References

[1] Agrawal, P., Tan, C., & Rathore, H. (2023). Advancing Perception in Artificial Intelligence through Principles of Cognitive Science. ArXiv (Cornell University). https://doi.org/10.48550/arxiv.2310.08803

[2] Al-Walai, S., & Liang, J. (2021). Impact of Artificial Intelligence on Management and Leadership in Research & Development (pp. 1–87) [MBA Thesis]. https://www.diva-portal.org/smash/get/diva2:1586193/FULLTEXT01.pdf

[3] AlQuraishi, M. (2019). AlphaFold at CASP13. Bioinformatics, 35(22), 4862–4865. https://doi.org/10.1093/bioinformatics/btz422

[4] Allen, P. (2014). Thermo Fisher Scientific announces a new business division. ALLpaQ Packaging Group. https://allpaq.com/thermo-fisher-scientific-announces-new-business-division/

[5] Foote, H. P., Hong, C., Anwar, M., Borentain, M., Bugin, K., Dreyer, N., Fessel, J., Goyal, N., Hanger, M., Hernandez, A. F., Hornik, C. P., Jackman, J. G., Lindsay, A. C., Matheny, M. E., Ozer, K., Seidel, J., Stockbridge, N., Embi, P. J., & Lindsell, C. J. (2025). Embracing Generative Artificial Intelligence in Clinical Research and Beyond. JACC Advances, 4(3), 101593–101593. https://doi.org/10.1016/j.jacadv.2025.101593

[6] Gao, J., & Wang, D. (2024). Quantifying the use and potential benefits of artificial intelligence in scientific research. Nature Human Behaviour, 8(12), 2281–2292. https://doi.org/10.1038/s41562-024-02020-5

[7] Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine learning and deep learning. Electronic Markets, 31(31), 685–695. Springer. https://doi.org/10.1007/s12525-021-00475-2

[8] Lee, M. C. M., Scheepers, H., Lui, A. K. H., & Ngai, E. W. T. (2023). The implementation of artificial intelligence in organizations: A systematic literature review. Information & Management, 60(5), 103816. https://doi.org/10.1016/j.im.2023.103816

[9] Marshall, T., Champagne-Langabeer, T., Castelli, D., & Hoelscher, D. (2017). Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs. Health Information Science and Systems, 5(1), 13. https://doi.org/10.1007/s13755-017-0030-0

[10] Mohsen, F., Ali, H., El Hajj, N., & Shah, Z. (2022). Artificial intelligence-based methods for fusion of electronic health records and imaging data. Scientific Reports, 12(1), 17981. https://doi.org/10.1038/s41598-022-22514-4

[11] Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language processing: an introduction. Journal of the American Medical Informatics Association, 18(5), 544–551. https://doi.org/10.1136/amiajnl-2011-000464

[12] Paranjape, K., Schinkel, M., Hammer, R. D., Schouten, B., Panday, R. S. N., Elbers, P. W. G., Kramer, M. H. H., & Nanayakkara, P. (2021). The Value of Artificial Intelligence in Laboratory Medicine: Current Opinions and Barriers to Implementation. American Journal of Clinical Pathology, 155(6), 823–831. https://doi.org/10.1093/AJCP/AQAA170

[13] Ramkumar, P. N., Kunze, K. N., Haeberle, H. S., Karnuta, J. M., Luu, B. C., Nwachukwu, B. U., & Williams, R. J. (2021). Clinical and Research Medical Applications of Artificial Intelligence. Arthroscopy, 37(5), 1694–1697. https://doi.org/10.1016/j.arthro.2020.08.009

[14] Shrestha, Y. R., Ben-Menahem, S. M., & von Krogh, G. (2019). Organizational Decision-Making Structures in the Age of Artificial Intelligence. California Management Review, 61(4), 66–83. https://doi.org/10.1177/0008125619862257

[15] Sundaram, L., Gao, H., Padigepati, S. R., McRae, J. F., Li, Y., Kosmicki, J. A., Fritzilas, N., Hakenberg, J., Dutta, A., Shon, J., Xu, J., Batzoglou, S., Li, X., & Farh, K. K.-H. (2018). Predicting the clinical impact of human mutation with deep neural networks. Nature Genetics, 50(8), 1161–1170. https://doi.org/10.1038/s41588-018-0167-z

[16] Tejeda, H., Kumar, A., Smyth, P., & Steyvers, M. (2022). AI-Assisted Decision-making: a Cognitive Modeling Approach to Infer Latent Reliance Strategies. Computational Brain & Behavior, 5(4), 491–508. https://doi.org/10.1007/s42113-022-00157-y

[17] Thermo Fisher Scientific Inc. - Investors. (n.d.). Ir.thermofisher.com. Retrieved April 20, 2025, from https://ir.thermofisher.com/investors/overview/default.aspx

[18] Vlad Vasiliu, & Gal Yavetz. (2024). Who’s afraid of AI? socio-technological perspectives on artificial intelligence in the workforce: an Israeli case study. Aslib Journal of Information Management. https://doi.org/10.1108/ajim-12-2023-0562

[19] Xu, Y., Wang, Q., An, Z., Wang, F., Zhang, L., Wu, Y., Dong, F., Qiu, C.-W., Liu, X., Qiu, J., Hua, K., Su, W., Xu, H., Han, Y., Cao, X., Liu, E., Fu, C., Yin, Z., Liu, M., & Roepman, R. (2021). Artificial Intelligence: a Powerful Paradigm for Scientific Research. The Innovation, 2(4), 100179. Sciencedirect. https://doi.org/10.1016/j.xinn.2021.100179

Downloads

Published

31-07-2025

How to Cite

Jin, W. (2025). AI Integration in Scientific and Clinical Research Management: Cost Reduction, Decision-Making and Leadership. Highlights in Business, Economics and Management, 60, 258-264. https://doi.org/10.54097/acagt923